Lightning rounds #22: Our drugs of choice

Bryan and Brandon go through their default, go-to drugs for common clinical indications in the ICU: stress ulcer prophylaxis, empiric antibiotics, hypertension, and more.

TIRBO #22: Understanding “weak” trainees

You have a trainee, orientee, intern/resident/fellow, student, or other learner who just seems slower than the rest. What should that mean to you? A perspective on this week’s TIRBO.

Episode 53: Documentation and coding with Robert Oubre

An exploration of clinical documentation and billing/coding with Dr. Robert Oubre (@Dr_Oubre), full-time hospitalist and CDI Medical Director for a community hospital in southern Louisiana.

Takeaway lessons

  1. Acute respiratory failure is justified when there is altered gas exchange (SpO2 <90%, PaO2 <60, CO2 >60 with pH <7.35, or P/F <300), clinical signs of increased work of breathing (using accessory muscles, etc), and a patient requiring respiratory support more than 4L O2 by nasal cannula. Requiring additional monitoring is also contributory.
  2. Many diagnostic names for pneumonia, such as nosocomial pneumonia or HCAP, end up coding to the same thing. Higher reimbursement comes from billing for “Gram negative pneumonia,” which requires risk factors including being hospitalized and received IV antibiotics in the last 90 days, immunosuppressed (including diabetes, alcoholism, CHF, cirrhosis, chemotherapy, CKD, drug-induced neutropenia, chronic malnutrition), or have structural lung disease such as bronchiectasis. It also requires treating with an antibiotic that covers gram negatives, and treatment for 5 or more days. If you have all of this, you may be able to bill for “gram negative pneumonia.” Treatment can be presumptive and you may state this; actual culture data is not required for this, although it is supportive if available.
  3. Diagnoses that are suspected but never fully proven can still be billed, particularly if they end up on a discharge summary.
  4. When in doubt, more detail is always better in diagnostic labels.
  5. Spell out your findings and reasoning and you’ll get more grace on your diagnoses.
  6. Sepsis diagnoses are a mess. Reimbursers tend to like sepsis 3 definitions (qSOFA), core metrics may still use the older definitions. Many facilities may have their own policies on what definition to adopt. From a clinician’s perspective, at this point, you should probably just call it sepsis when you think it’s sepsis and let the billing will work itself out.
  7. Document every diagnosis that contributes in any way to their current stay, even if your active management is minimal – it generally contributes to their risks and complexity.
  8. In 2023, the whole billing paradigm is expected to change, with less emphasis on billing based on number of categories in the HPI, ROS, PE, etc, and complexity being instead based mainly on time and acuity.
  9. Various providers can document diagnoses and all will count, but if there is dispute it will usually fall to the attending of record to make a final call.
  10. The “case mix index” is an amalgamate of the overall complexity of your patient population, which is reviewed regularly and modifies overall reimbursement; this help capture complexities and costs of care beyond what’s shown by the specific DRGs. This is based on other diagnoses and factors; hence, document everything.
  11. At the end of the day, you may not like the requirements for documentation and how it’s linked to reimbursement, but it is the way it is, and doing a poor job doesn’t mean the system will change – it just means your employer will be under-reimbursed, which in the end does affect you and your patients.

References

TIRBO #21: Locating, securing, and dressing lines

How to locate, secure, and dress your lines so they’ll stay put and stay clean.

Lightning rounds #21: CME, merch, Patreon, and other podcast updates

Updates on the podcast, including how to claim credit for continuing education, how to support us by becoming a patron or buying merchandise, and our general perspective on making money through free medical education.

Find us on Patreon here!

Buy your merch here!

TIRBO #20: Understanding the needle

Understanding the various needles in your central line kit, how to get really, really good at ultrasound guidance, what to do when your view stinks, and more needle-related tips.

Episode 52: Pleural effusions in the ICU with Emily Fridenmaker

Discussing pleural effusions in the critically ill, including how and when to drain them, methods of drainage, interpreting laboratory studies, and managing complications, with Dr. Emily Fridenmaker (@emily_fri), pulmonologist and intensivist at Charleston Area Medical Center in West Virginia.

Continuing education for this episode

CME credit provided courtesy of Academic CME. To claim your CME credit for this episode, click here to complete a short quiz.

Takeaway lessons

  1. IMAGING
    1. CXR – underestimate
      1. Lateral – 75mL (5-15 mL is normal)
      2. AP – 175mL
        iii. 500mL for 100% sensitivity
    2. CT – overestimate
      1. Contrast can help delineate pleural surface
    3. Ultrasound – goldilocks
      1. Can see 5-50mL fluid
      2. > 1cm generally safe to sample
  2. INITIAL WORKUP
    1. Thora – no absolute contraindications
      1. Should tap an effusion if you don’t know what’s causing it
        1. Diagnostic or therapeutic
        2. Does little to change hypoxia—can impact dyspnea though due to diaphragm length-tension relationships
        3. Complication rate = ??
      2. Differential
        1. Nucleated cells – greater than 50k usually paraPNA/empyema
        2. Lymphocytosis – TB, lymphoma, sarcoid, RA, yellow nail syndrome, chylothorax, cancer
        3. Eosinophilia – >10%; pneumo, hemo, infarction, asbestos, parasites, fungus, drugs, catamenial, malignancy, TB, CEP
        4. Mesothelial – normal in pleural fluid
      3. Light’s Criteria—protein and LDH (serum and pleural), albumin, cholesterol
        1. Aim was to have a high sensitivity, since shouldn’t miss an exudate
        2. The criteria—any one of them gives you an exudate
        3. Pleural protein/serum protein > 0.5—can be elevated by diuresis
        4. Serum albumin/pleural > 1.2
        5. Pleural LDH/serum LDH > 0.6
        6. Pleural fluid LDH > 2/3 ULN
        7. Cholesterol >45 can also help to indicate an exudate
        8. Glucose
          1. Low: complicated effusion/empyema, malignant, TB, lupus, rheumatoid pleurisy, esophageal rupture
        9. pH – normal is 7.6 due to bicarb gradient
          1. <7.3 – same conditions as low glucose ii. If low, higher yield on cytology for malignancy, less response to chemical pleurodesis
          2. Parapneumonic <7.15 – needs pleural space drainage
          3. Lidocaine will falsely drop the pH
        10. Amylase – pancreatic or esophageal etiologies
        11. ADA – TB; usually >40
        12. Cytology – malignant; sensitivity is 60%, 85% with second sample
  3. TRANSUDATIVE VS EXUDATIVE
    1. Transudative
      1. Atelectasis, CHF, hepatic hydrothorax, low albumin, iatrogenic, nephrotic syndrome, PD, urinothorax
    2. Exudative
      1. Infectious, drug induced, trauma, malignancy (stage 4), CTD (RA, lupus, EGPA, GPA), hypothyroid/ovarian hyperstimulation syndrome, chylothorax, pancreatitis, sarcoid, post cardiac injury syndrome, radiation, PE, BAPE
  4. PARAPNEUMONIC CLASSIFICATIONS
    1. Simple – resolve with abx (1-2 weeks), don’t require drainage or special abx considerations
      1. Free flowing, sterile
      2. Exudative – neutrophilic predominance, normal pH and glucose level
    2. Complicated – evidence of infection of the space
      1. Exudative, high white count, pH <7.2, glucose <40 (or 60?), LDH >1000, + gram stain
      2. Large, loculated, thickened pleura, air bubbles in effusion
    3. Empyema (subset of complicated)
      1. Pus in the pleural space
      2. Longer clinical course, possibly subacute
        D. Complex
        i. Internal loculations
  5. MANAGEMENT OF COMPLICATED PARAPNEUMONIC EFFUSIONS
    1. Drainage usually required for source control—poorer prognosis without it
      1. Particularly if pH <7.15, low glucose, or LDH>1000
    2. Empyema
      1. Loculated
      2. + gram stain or culture
      3. Thickened parietal pleura
    3. Approach to drainage: Tube thoracostomy
      1. Small bore (10-14) similar efficacy to large
      2. MIST 1 – no difference in mortality or need for VATS between large, medium, or small bore tubes
        1. Retrospective—small bore noninferior
        2. Flush q6 to keep patent
      3. Suction is typical but not necessary
      4. Reimage after placement, when drainage slows
      5. Remove when less than 50-100mL for a couple of days, imaging is improved, clinically improving
      6. Reimage in about 2 weeks
    4. Failure of drainage – Repeat imaging 24hrs after completion of chosen intervention
      1. Lytics, multiple tubes preferred before VATS
        1. Probably best for early, multiloculated effusions
        2. DNAse breaks down DNA, reducing viscosity. tPA is fibrinolytics, busts up loculations
        3. MIST 2 – less need for VATS (30-80%) with tpa (10)/dornase (5) BID x 3 days
        4. New data shows simultaneous admin may be as efficacious
      2. VATS if significant organization, trapped lung (can be elective)
        1. No mortality benefit shown
        2. Pleural hemorrhage – 1-7%, indication for VATS
        3. Indicated when abx, tube, lytics have failed
        4. Also indicated up front if there is significant organization, fibrothorax, trap
        5. May need to be converted to open thoracotomy
        6. Maybe reduced LOS? MIST 3 looking at early VATS vs early lytics
      3. Window thoracostomy/eloesser flap
  6. ANTIMICROBIAL THERAPY
    1. i. CAP – Rocephin + flagyl or unasyn
    2. Lots of clinda resistance now
    3. Atypicals rarely cause complicated effusions
    4. MDRO risk factors – MRSA, pseudomonas, and anaerobes
    5. Optimal duration unknown
      1. usually 2-3 weeks for complicated
      2. 4-6 weeks for empyema
      3. Can switch to PO when clinically improving
      4. Radiographic resolution can take weeks to months; this is not the goal
  7. COMPLICATIONS OF PLEURAL SPACE INFECTIONS
    1. Fibrothorax, pleural fibrosis
    2. Restriction, unexpandable lung
    3. Decortication not considered unless restriction/limitation present 6 months later

TIRBO #19: Guidewire safety

Ensuring patient and operator safety with Seldinger guidewires, with considerations such as losing wires, transecting them, and perforating vessels.

Lightning rounds #20: Being efficient

Brandon and Bryan chat about tricks and methods of increasing efficiency and getting things done at work.