Episode 70: Airway evaluation for non-anesthesiologists, with Jed Wolpaw

We discuss assessing patients prior to intubation or other airway management, including both elective and emergent circumstances, with Dr. Jed Wolpaw, anesthesiologist and intensivist from Johns Hopkins, anesthesiology residency program director, and host of the ACCRAC podcast.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. Edentulous (toothless) patients are usually easier to intubate, but harder to mask ventilate. Heavy beards are harder to mask (can you trim it, or cover it with a Tegaderm?), larger neck circumferences, and larger tongues likewise.
  2. Consider the history, particularly involving the head and neck anatomy. Is there surgical history here? Jaw or oral surgery? Prior trachs or oral/neck radiation? Rheumatoid arthritis or Down syndrome (which can cause atlanto-occipital instability and may warrant trying to limit any forced neck extension)?
  3. Start by looking into the patient’s mouth (mouth open, sitting up, no “aah”):
    • Mallampati score (do you see the entire uvula, part of it, soft palate, or hard palate only?)
    • How is the dentition? Remove dentures if present. Are there loose teeth?
    • Is there an excess of soft tissue in the mouth (large tongue, etc)?
  4. Evaluate the thyromental distance (thyroid bump to chin); <3 cm (or fingerwidths) suggests a more “anterior” airway.
  5. Evaluate neck flexion and extension (passively if necessary) to appreciate limitations in neck mobility.
  6. If the patient is able, evaluate how well the jaw can protrude/prognath: ability to bite more of the upper lip with the lower teeth is a good thing. This is probably the single most predictive test for airway difficult, although it usually requires patient cooperation.
  7. Review the chart (or ask the patient) for prior documentation of intubation or anesthesia to determine if they have a history of a difficult airway. This can require some interpretation of the context and who was intubating previously. Good practice when documenting: write exactly what you did, and if it was difficult, write why! If you used a technique like awake intubation, a bougie, etc for elective or training reasons, document that reason so they don’t earn a label of a difficult airway forever.
  8. The STOP-BANG score is used to predict post-anesthesia airway obstruction (i.e. OSA), and probably has some association with faster deoxygenation and difficult mask ventilation, but is generally not super relevant for intubation.
  9. A patient with any concern for difficult intubation warrants consideration for factors also contributing to difficult LMA placement or cricothyrotomy. LMAs are difficult to place when the mouth opening is very small (about 2 inches) or the oral-laryngeal anatomy is unusual, and crics are difficult when the neck anatomy is impossible (eg a superimposed tumor, goiter, or heavily distorted anatomy). A patient who cannot have a cric may warrant an awake intubation to avoid the risk of inducing a patient who cannot be rescued.
  10. Obesity is not a predictor of anatomically difficult intubation. Mask ventilation may be a little harder if there is increased oropharyngeal soft tissue. It is a predictor of physiologic difficulty (faster desat), though.
  11. For emergent intubations: confirm code status, briefly evaluate the head/neck/mouth, use video laryngoscopy. Use hemodynamically stable agents for induction and reduce the dose, and ensure the team knows to subsequently sedate any patient who received a long-acting paralytic. Have a vasopressor drip ready, or better yet, running. Always set up everything and be prepared for every eventuality before you take away a patient’s ability to breathe.
  12. Either RSI with paralytics, or perform awake intubation. Otherwise, never RSI the critically ill without neuromuscular blockade, which will reliably reduce your chances of success. Short-acting paralytics (succinylcholine) are brief—i.e. not much longer than the apneic period of a short-acting sedative—and long-acting paralytics (eg rocuronium) can be reversed with suggamedex, in the rare situations where letting the patient wake up and resume breathing is a smart move.
  13. The one exception might be a ketamine-only intubation, which generally keeps the patient breathing, allowing you to either proceed to paralyzing or not depending on what you see, or maybe allow them to wake up.
  14. While it’s nice if an emergent intubation has been NPO, it probably won’t change your technique; changes in gut motility in the critically ill mean almost anybody can have stomach contents. Treat most ICU patients as if they have a full stomach, i.e. RSI. The one exception: the PREVENT trial showed that mask ventilation during induction (usually a no-no for RSI) of critically ill patients does not increase aspiration risk and does reduce hypoxemia, so should probably usually be done.
  15. In the highest aspiration risk patients like SBO or upper GI bleeding, keep the head of bed elevated, ensure ample/multiple suctions catheters, and be ready/willing to intubate the esophagus intentionally with your ETT and place it to suction to divert the stomach contents while you use a fresh ETT to intubate the glottis. Placing an NG beforehand to decompress the stomach is hit or miss as it can induce vomiting; it works better in a fully awake patient (who can manage any vomiting).
  16. We should probably still learn and teach direct laryngoscopy, but do so using a video scope with regular-geometry blade.

References

  1. PREVENT trial

Episode 69: Head and neck surgery with Alexandra Kejner

We discuss head and neck surgery with Dr. Alexandra Kejner, otolaryngologist at the Medical University of South Carolina specializing in transoral robotic surgery, reconstructive surgery including microvascular free tissue transfer, salivary neoplasms, and sialoendoscopic procedures.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. Robotics has enabled much less invasive approaches to many head and neck procedures.
  2. Major airway procedures create edema, and there is always risk for bleeding, so patients often remain intubated overnight.
  3. The other common ICU indication is a free flap, a portion of tissue (potentially including skin, subcutaneous tissue, muscle, even bone) removed from a remote site and transplanted into the head and neck area, with vessels anastomosed. These are at risk of failure and require close monitoring.
  4. Most of these procedures will involve placing a tracheostomy, and potentially a PEG (or NG). This facilitates both surgical access and early recovery.
  5. Tumors are superficially resected with adequate margins, then reconstruction begins. Meanwhile, exposure of deeper structures and deeper resection occur, which may involve a jig to guide the removal (prepared in advance from imaging), and a matching cut to prepare the flap tissue. Lymph nodes are removed en bloc. Then the flap is transplanted and vessels anastomosed (at least one robust artery and vein), using microsurgery and teeny sutures (often 8-0 nylon).
  6. As a supplement to the clinical exam, an implantable Doppler monitor is occasionally left in place to augment post-op monitoring of perfusion, as well as sometimes a Vioptix near-infrared spectroscopy device which performs real-time tissue oximetry.
  7. On POD 0-1, hourly nursing monitoring of the flap is usually needed, with periodic provider checks. Changes in the exam (swelling, turgor, cap refill, color), signal, or bleeding may require return to the OR for revision. A single ICU night is the norm, although comorbidities are common and may require a longer stay if the stress of surgery unmasks other problems.
  8. Laryngectomy may be performed, involving removal of the larynx (voice box), leaving a blind pouch; the lungs no longer connect to the upper airway in this case, and the entire team should be aware of this anatomy, as the patient cannot be intubated or their airway otherwise managed from above.
  9. Most flaps will be on a baby aspirin and enoxaparin, but occasionally may use a heparin drip.
  10. Most will receive three doses of dexamethasone, both to reduce edema and to treat any adrenal insufficiency.
  11. Chlorhexadine or salt water oral rinses are performed to keep the operative site clean.
  12. Multimodal pain management is needed for both the oral site and the donor flap site.
  13. A drop in the Vioptix signal from the initial post-op reader, neck swelling, or difficulty breathing (dyspnea, hypoxia, etc) all warrant immediate involvement of the surgical team for danger to the airway or the flap. Flaps might also turn purple from venous congestion, sometimes a little later, also a surgical emergency.
  14. A questioned flap might be scratched to see if it bleeds (which is good).
  15. A patient in shock might need vasopressors, fluid, or to be hypotensive, none of which are great for a flap. A balanced approach is probably best. A low-dose phenylephrine drip may be the most appealing pressor, and vasopressin might be the riskiest. MAP >65 is a minimum, some prefer higher (>80).
  16. Intro-operative feeding has been used in some centers due to the prolonged procedure times.
  17. Flap failure historically was most often from a venous clot, but this has reduced over time; nowadays it’s often late failures due to a salivary fistula contaminating the area and creating a region of digestion, clot, and breakdown.
  18. Surgeons will occasionally request deeper sedation (or even forcing the patient to maintain a specific neck position) to avoid dislodging monitors, disrupting a very delicate anastomosis, etc.
  19. A swollen or firm anterior tongue, ooziness in the mouth, or a difficult airway on the initial intubation may lead a surgeon to request delaying extubation.
  20. The immediate post-op appearance usually heals into a better eventual aesthetic result. Occasionally measures like prosthetics can be used.

References

  1. Vasopressors improve outcomes in autologous free tissue transfer: A systematic review and meta-analysis
  2. Postoperative Use of Vasopressors in Head and Neck Microvascular Reconstruction

Episode 68: Liver transplant with Meera Gupta

We learn about liver transplant with Dr. Meera Gupta, transplant surgeon at the University of Kentucky Healthcare Transplant Center, and surgical director of the Kidney and Pancreas Transplant Program. We discuss eligibility, triage, the peri-operative course, and important post-op complications.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. Liver transplant eligibility is based on need, not time on the list. The MELD score (MELD 3 now, including albumin) is used for this, with MELD >9 (historically >15) considered the cutoff for transplant potentially exceeding the risk of not transplanting.
  2. Livers can now be placed on warm perfusion pumps, allowing continued viability for much longer. This is mainly used in donors who died from cardiac death, those with high BMI or similar risks for primary non-function (i.e. the transplanted liver never starts working), and longer transport distances or expected operative times.
  3. Incision is a large right subcostal incision, extended as needed. The liver hilum is dissected, preserving the feeding vessels. Caval clamping may be tested, then the liver is removed. This anhepatic phase in minimized to <60 minutes, preferably <45 minutes. The new liver is then anastomosed to the portal veins, vena cava, hepatic artery, and the bile duct. Some instability can occur during reperfusion, such as right heart strain, electrolyte abnormalities, or volume shifts.
  4. Patients will usually remain intubated post-op, lines in place. Sedation ideally is limited so the patient can rouse and confirm the absence of encephalopathy. Systolic BP is closely watched (goal >90), as diastolic BP tends to be low in most liver failure patients. Hepatopulmonary patients can rest on the vent a little longer and are expected to remain on oxygen for the time being. Patients can be fed once extubated and stable.
  5. High-dose steroids are loaded up front and then tapered, and oral immunosuppression initiated soon after.
  6. Some AKI is common. Colloid like albumin is favored early.
  7. Chronic thrombocytopenia is common and is monitored to determine when DVT prophylaxis can be started. Platelets >20k are targeted.
  8. If INR >2, vitamin K is given empirically. FFP is usually not given prophylactically. Bleeding is usually considered a little preferable to clotting, in terms of ease of treatment.
  9. A liver duplex is performed in the first 24 hours to ensure the new vascular supply is patent.

Episode 67: Whipples with Michael Cavnar

We learn about pancreaticoduodenectomy (the Whipple) with Michael Cavnar (@DrMikeCavnar), surgical oncologist at University of Kentucky, with a fellowship in Complex General Surgical Oncology from Sloan Kettering. He specializes in GI surgical oncology (liver, pancreas, stomach, etc), with ongoing research in GI stromal tumors and hepatic artery infusion pump chemotherapy.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. The Whipple involves an aggressive resection and reconstruction of pancreatic head tumors. Along with the head of the pancreas, the entire duodenum, the bile duct (up to near the entry of the cystic duct), the gallbladder, and usually the distal third of the stomach, along with the nearby lymph nodes, are all removed. There are then anastomoses at the small intestine, the bile duct, and the stomach.
  2. The pylorus of the stomach is generally removed, but can be left in a pylorus-sparing Whipple. The benefit of this is not well-established.
  3. It is almost always done for malignancy (or occasionally for other conditions like pre-malignant changes or pancreatitis with stricture). Mortality in high-volume centers is a few percent, and usually involves deaths in the first 90 days due to various complications more than death in the OR.
  4. Hypotension in the first 24 hours is a poor sign, as it may lead to bowel ischemia, portal vein thrombosis, anastomotic ischemia, or other injuries to vulnerable areas. If getting behind on hemodynamics, consider holding an epidural if present.
  5. NG tubes are often placed to around 55 cm. They should not be advanced or replaced by the ICU staff, as the stomach has been shortened, and advancing the tube may traumatize the anastomosis. Bilious gastric drainage is normal in anyone with post-Whipple anatomy. Patients will generally remain NPO for several days.
  6. Patients will emerge with 1-2 surgical drains. Output should be serosanguinous (sparsely bloody at most), less than 200ml/hr or so. It may occasionally be lymphatic (clear to lightly serosanguinous), which can be somewhat higher volume. Output should not be bilious or feculent.
  7. Early bleeding requiring surgical take-back is uncommon and usually obvious in the drains, unless they clot, which can occur. A pancreatic leak can also dribble onto the stump of the gastroduodenal artery, causing erosion, and subsequent bleeding usually tracks back up into the bowel lumen and hence GI bleeding.
  8. Respiratory distress can be treated with oxygen or high-flow nasal cannula, but positive pressure (eg. BiPAP) should be used with caution and consultation with the surgical team, particularly within the first two weeks post-op, as aerophagy can apply pressure to the bowel anastomosis.
  9. A leaking pancreatic anastomosis causing fistula will tend to marinate the gastroduodenal artery’s anastomosis in pancreatic juices, creating a pseudoaneurysm; this can be managed early before it turns into massive hemorrhage. Any streak of fresh blood in the drainage should be considered a sentinel marker of this and immediately evaluated, usually involving CTA or pancreas-protocol CT. The treatment of choice is IR embolization and stent, not open repair.
  10. Glucose control in diabetics will usually be worse post-operatively, both due to stress and due to removing a portion of the pancreas. SGLT inhibitors can cause strange metabolic effects as well if not fully washed out.
  11. Exocrine pancreatic insufficiency can be discovered once feeding begins, usually manifesting as diarrhea (steatorrhea), and can be treated with pancreatic enzyme supplements.
  12. A proton pump inhibitor should generally be used post-operatively.

Episode 66: Aortic dissection with Travis Hughes

We explore aortic dissection with Travis Hughes, vascular surgery fellow from the University of Kentucky, including classification, medical management, and nuances of the surgical perspective.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. Type B dissections do not involve the heart or coronaries, but Type A vs B nomenclature is falling out of favor versus more anatomically specific labeling; this system helps characterize the gray area between the innominate and the left subclavian.
  2. The main sequelae of concern in type B dissection in end organ ischemia. This may be dynamic, due to movement of the flap to obstruct the feeding artery, or static, due to occlusion by thrombosis.
  3. Hypotension is unusual in type B dissection and should be a red flag for another factor, such as involvement of the heart (coronary dissection, tamponade), or rupture.
  4. Rupture is not a common event in dissection (as compared to aortic aneurysm), but can occur.
  5. Medical management of type B dissection involves controlling the impulse against the dissection flap by reducing heart rate and blood pressure. SBP <120 and HR <80 are reasonable standard goals, but should be customized somewhat to the patient; allowing higher goals in a pain-free patient, particularly one who is experiencing sequelae of relative hypotension may be reasonable.
  6. During initial presentation, impulse control may prevent dissection from extending over a period of hours. Later, once it has thrombosed and scarred, risk may be somewhat less.
  7. Dissection involving the renal arteries can be explored using doppler ultrasound in skilled hands.
  8. Focal neurologic deficit should prompt concern for both stroke, and (in the lower extremities) thrombosis.
  9. First line is usually an IV beta blocker for heart rate and either IV beta or calcium channel blocker for BP. Esmolol is a classic beta blocker, although involves a large volume of infusate, and is not always very effective. Labetalol and nicardipine are nice choices. Nitroprusside is usually a rescue.
  10. Favor the right radial artery for an arterial catheter, as the left arm will sometimes be needed for the repair.
  11. Transition to oral agents as they stabilize. A repeat CTA 5-7 days from admission (often prior to discharge) is usually appropriate.
  12. The most common indication for repair is aneurysmal degeneration at the dissection site. Extension of the dissection, in the setting of appropriate medical management, is less common although possible, and may also indicate the need for repair.
  13. The primary goal of repair is to cover the entry to the dissection, and potentially stenting to expand the true lumen. When there is involvement of the iliac arteries, stenting is usually needed there. Malperfusion to visceral vessels is often corrected with these maneuvers, but they can be specifically stented or thrombectomy performed if needed.
  14. Open repair of type B dissection has become vanishingly rare due to high morbidity and rare indication.
  15. Stenting of the aorta creates risk for spinal cord ischemia, so keep BP higher. Extremity neuro changes should prompt driving the MAP >90, naloxone, and IV steroids.
  16. Lumber drain placement probably reduces this risk, and can be placed either reactively or proactively. Neurosurgery and/or anesthesiology or interventional radiology may do this.
  17. Shorter ischemic time to organs or extremities, and baseline vasculopathy (which gives time for the body to develop a tolerance to it), portend better recovery after revascularization. Prolonged ischemia to extremities may require amputation or at least fasciotomies to prevent compartment syndrome.
  18. Aspirin and perhaps clopidogrel (with or without a load) will usually be needed post-operatively.
  19. Infection of long-standing grafts are not common but can occur. Contrast imaging and perhaps tagged WBC scans (nuclear scintigraphy) can identify these. Surgical removal may or may not be possible and tends to be morbid.

Episode 65: Obstructive UTI with Ashley Winter

We discuss the nuts and bolts of urinary infection with an obstructing stone with Ashley Winter (@AshleyGWinter), board certified urologist with a fellowship in male and female sexual medicine, and chief medical officer of Odela Health.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. A patient with UTI (or even just undifferentiated sepsis) and a non-trivial ureteral stone generally needs decompression of the affected kidney, whether or not there is significant hydronephrosis on imaging. Hydro is sensitive to other factors, such as dehydration, but its absence does not rule out sepsis secondary to urinary obstruction. CT is more sensitive here than ultrasound, which is mostly useful for ruling in hydronephrosis. (Such patients will usually need a stent, not a nephrostomy, as the latter is difficult when there is little hydronephrosis.) From a urology perspective, the size and position of the stone is probably more important than the hydronephrosis.
  2. That being said, be attuned to the possibility of a patient with another source of sepsis, and an incidental bacteriuria and kidney stone. Anesthesia and a urology procedure won’t help these people. A cleaner urinary sample (e.g. straight cath or Foley, if the initial sample was a “clean” catch) can sometimes help here.
  3. Consider also that a completely obstructing stone may be hiding pyelonephritis because the bacteria and leukocytes cannot pass the stone. This is not a very common scenario, but can lead to a “clean” urinalysis, so consider it in a patient with an obstructing stone and septic picture.
  4. Try to get a urine sample before giving antibiotics.
  5. Intra-renal stones will usually not cause obstruction, but occasionally in the setting of abnormal anatomy they may, such as a stone in a caliceal diverticulum causing a local/segmental hydronephrosis.
  6. Obstructing stone + UTI + unstable with sepsis = emergent decompression within hours. Overnight cases should generally be drained overnight. Stable patients can potentially wait longer.
  7. Option #1 for decompression is a ureteral stent, which stretches from the intra-renal pelvis to the bladder, traversing the area of the stone, and is deployed via cystoscopy. Urine drains around the stent, not necessarily through it. Stents can usually only be left for a maximum of 3 months and should be removed when no longer needed (i.e. when serial imaging shows passage of the stone, or a procedure has been performed to remove the stone). Long-term stent requirements involve serial stent replacements. They are placed in the OR under some level of sedation. Very distorted anatomy, such as in oncology cases, may make it difficult to find the ureteral orifice or to traverse the ureter.
  8. Option #2 is a percutaneous nephrostomy. These are placed by Interventional Radiology. The patient is proned (not possible in all patients), and imaging (usually ultrasound) is used to guide a needle to the renal pelvis, then a pigtail catheter using a Seldinger technique. This can often be done with local anesthesia only. Lack of significant pelvic dilation or large body habitus make these more difficult. The result is a nephrostomy tube and drainage bag, which can be aesthetically unappealing to many patients. Anticoagulation may be a contraindication since you’re puncturing the renal parenchyma. They are usually not intended to be permanent, but can be left long-term in some cases.
  9. Stents tend to be more uncomfortable, sometimes creating flank pain or a sensation of the need to void even with an empty bladder. Urine can even reflux up the stent into the renal pelvis during voiding.
  10. Urostomies can sometimes make the procedure to remove a massive intrarenal stone like a staghorn calculus, since percutaneous nephrolithotomy can use the pigtail for access. Smaller stones can be removed via ureteroscopy.
  11. Some stones are impacted, which may be difficult to navigate across with a stent. Technical maneuvers can be attempted, but occasionally it can’t be done and nephrostomy needs to be done as a rescue.
  12. Ultimately, stent vs nephrostomy often comes down to institutional and logistical considerations, such as availability of urology compared to IR. Many centers have policies on who to call first.
  13. A common phenomenon is clinical deterioration after decompression. Some of this may be iatrogenic; both stenting and nephrostomy involve pressurizing the renal pelvis by injecting contrast, which can force out some bacteria into the circulation. Reducing the volume or rate of contrast injection may help with this.
  14. Antibiotic coverage can be as routine for sepsis, but if there is complex urological history, remember to check prior cultures (including stone cultures, if available), which may reveal a history of resistant organisms.
  15. Stented patients who fail to improve in the acute to subacute period may be experiencing stent migration. Check position with a plain x-ray (KUB); if the proximal portion is not curled, further imaging may be needed as it suggests it’s not in the kidney.
  16. Stent removal can sometimes precipitate instability as well if there is some degree of infection present.

Episode 64: Neurologic POCUS with Aarti Sarwal

We explore the cutting edge practice of point-of-care ultrasound of the brain, including optic nerve sheath measurement, transcranial doppler, assessing midline shift, and more, with Aarti Sarwal, neurologist and neurointensivist, director of the neurocritical care unit at Wake Forest, and director of their neurovascular lab and ultrasound courses.

Find us on Patreon here!

Buy your merch here!

References

Anatomy

Literature and guidelines

Pupil reactivity assessment

Doppler patterns

Midline shift

Takeaway lessons

  1. POCUS can potentially be used to identify elevated ICP by optic nerve sheath ultrasound or pupillary assessment (in patients with difficult-to-assess pupils due to edema or other factors). Midline shift can be seen and quantified via the temporal window, and hemorrhagic masses can potentially be visualized. Finally, spectral doppler of the cranial vessels can show changes in intracranial compliance, similar to that seen in formal TCDs during vasospasm.
  2. Learning curve for these studies is probably around 50-100 studies until competence, but may be creeping closer to 30–50 and eventually lower due to improving education, and increasing awareness and skills with the general concepts being applied.
  3. The linear probe can be used over a closed eyelid to visualize the iris, allowing assessment of pupil response when light in shined in the opposite eye; this can be useful when the lid cannot be opened, such as from edema or trauma. M-mode can even be used for quantitative pupillometry.
  4. An increased diameter of the optic nerve sheath measured 3 mm from the globe (using the linear probe in a transverse, ear-to-ear axis) correlates with increased intracranial pressure, as the sheath is a continuation of the cranial space and tends to swell with higher ICP. Papilledema can also be seen here as bulging of the optic disc. Use the orbital or ocular preset, which reduces power (mechanical and thermal indexes) delivered to the eye.
  5. A cutoff reflecting elevated ICP is usually somewhere in the 5-7 mm range. However, normal values vary a lot, and very acute ICP crisis can choke off the continuity and cause normal diameters, so simple measurement can imperfect (analogy: IVC measurement). Trending can be more useful if you can establish a baseline, and papilledema is somewhat more specific. In pediatrics, adjusting for head circumference can help.
  6. Slower increases in ICP tend to be associated with larger optic nerve sheath diameters, whereas rapid increases may actually be associated with normal sheath diameter, due to edema at the basal cistern level choking off communication with the cranial vault.
  7. Midline structures like the pineal gland, third ventricle, or septum pellucidum can be seen from the temporal ultrasound window; 85-95% of the population will have adequate windows here, at least on one side, with some decrease in old age. Males tend to have worse windows, windows worsen over time, and there is some ethnic variation.
  8. Research is early, but distance of the midline structures from the probe can be compared with their distance from the opposite skull (i.e. in the deep field). Differences between the two can help diagnose and quantify midline shift. Caveats: it’s difficult to establish exactly the same angle when insonating opposing sides, and identical angles can be impossible due to limitations in the windows, so don’t compare that way. The region of edema may mean different structures are shifted while others are normal, or even that there is no shift (e.g. herniation is not lateral); ideally, pick a midline structure that makes sense for where their pathology is found. This is probably more useful for serial comparisons than absolute values, since your angle that penetrates the small temporal window will usually not be perfectly flat, but will be reproducible.
  9. Global edema may not be seen in midline shift, but may be seen in the TCD waveforms. Spectral doppler of vessels like the MCAs should show low resistance waveforms in a normal brain (low systolic peaks, a long runoff and high diastolic), while in a tighter brain with higher ICP, resistance gets worse, with a higher systolic, quicker drop, and lower diastolic pressure, all the way up until diastolic pressures become less than zero and flow is oscillating (e.g. back-and-forth during the cardiac cycle, which reflects no overall flow and is consistent with brain death). TCD measurements can be directly extrapolated to ICP using a number of published formulas.
  10. Research is early, but transtemporal B-mode seems to have good sensitivity (>95%) for detecting parenchymal hemorrhage in the brain, as long as it is large and fresh; new blood shows up as a hyperechoic lesion with shadowing.

Episode 63: Understanding dialysis, with Paul Adams

We dive into when to initiate renal replacement therapy, the modalities, settings, and physics involved, troubleshooting problems, and more, with Dr. Paul Adams, a dual-trained nephrologist and intensivist at the University of Kentucky.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. One of the better indications for early dialysis in the ICU patient is to control volume, which in an oliguric patient you know is likely to keep accumulating.
  2. Help determine who is likely to eventually need dialysis (and hence deciding early vs late, not early vs maybe never) with a furosemide stress test: give 1-1.5 mg/kg of furosemide (160 mg is often about right), then if they don’t make about 1 ml/kg/hr of urine for a few hours, they’re likely to end up needing renal replacement therapy.
  3. Realistically, most true indications for acute dialysis in the ICU are hyperkalemia, volume overload, or occasional toxicology.
  4. CRRT is generally more effective at volume management, particularly preemptive volume management, because it continues throughout the day and can more easily keep up with inputs. It is also more hemodynamically stable.
  5. CRRT can be done via CVVH (using convective flow to drag out fluid and solutes via pressure across a filter), CVVHD (using diffusion gradients to clear solute and fluid), or CVVHDF (using both). Which modality of CRRT is used tends to come down to institution and practitioner practice, although there are some clinical differences in amount of solute clearance and such.
  6. Effluent is the balanced electrolyte fluid which is used for therapy, and can be run into the blood before reaching the filter (diluting it and improving filter life, but decreasing efficiency), after reaching the filter (purely to replace what was lost), and on the other side of the filter (creating a dialysis effect). Total effluent rate gets divided among these sites as you like.
  7. UF (ultrafiltration) is essentially whatever fluid is lost that you’re not replacing.
  8. About 25–30 ml/kg/hr is usually about the right effluent rate. A higher rate helps make up for interruptions during the day.
  9. 150–250 ml/hr bloodflow is about right; it generally has relatively little effect on clearance in CRRT (unlike in intermittent HD, where it directly impacts clearance).
  10. Circuit life can be prolonged with anticoagulation. Heparin can be used either systemically or regionally (infused at the start of the circuit, then reversed at the end using protamine), or citrate can be used regionally (replaced with calcium at the end), although it requires close monitoring of ionized calcium levels (really the ratio between total and ionized calcium, since citrate-bound calcium still registers on total calcium assays; a total calcium more than 2-2.5x higher than ionized levels suggests citrate toxicity).
  11. 16–18 hours of CRRT is usually needed before you start to see an impact on serum solute levels. For critical levels like severe hyperkalemia, start with IHD instead to get a quick correction.
  12. Pressure problems at the dialysis access are almost always due to anatomic issues like catheter placement. Try adjusting the line, such as placing it deeper. Reducing bloodflow may help, using a different site, or rarely pharmacologically paralyzing the patient.
  13. Pressure problems at the filter (“transmembrane pressure” or TMP) are usually from clotting. Consider anticoagulation if not already being used, or pre-filter fluid. Inflammatory patients like in sepsis can have very dirty, clotty blood.
  14. If a patient starts making 600-1000ml of urine daily, consider weaning of renal replacement. That is not common in the critically ill, even if they eventually have later renal recovery; transition to IHD is more common.
  15. If volume inputs are still ample (many liters a day), it’ll be hard to keep up using IHD, since UF rates top out around a liter per hour. Stick with CRRT in that case.
  16. Rhabdomyolysis “disproportionately” increases BUN and creatinine, since those are products of muscle breakdown; they may have adequate renal function (demonstrated by robust urine output) despite high numbers.

Episode 62: Running a cardiac arrest

Bryan puts Brandon through the paces, discussing the nuts and bolts of managing a code.

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. Managing a room is less about asserting authority and more about leading by example. Cardiac arrest is a great microcosm and litmus test for your team dynamics for all resuscitation.
  2. Consider arterial lines early. IOs are usually fine for other access; central lines are rarely essential early.
  3. ACLS is fairly rote and can be easily delegated. The most important role of the team lead, other than assuring quality, is considering reversible causes of arrest.
  4. Consider calcium if hyperkalemia is possible and magnesium if there’s torsades.
  5. Use bedside ultrasound to rule out reversible causes like cardiac tamponade and tension pneumothorax, but don’t interrupt compressions.
  6. Once you have a pulse, expect to need continuous pressors, readdress your ABCs, ensure adequate monitoring, consider TTM, and consider reversible causes such as coronary ischemia.

Episode 61: ECPR with Scott Weingart

We chat with Scott Weingart of Emcrit about the use of crash VA ECMO for the cardiac arrest patient.

Check out the REANIMATE course here!

Listen to the ED ECMO podcast on ECPR here

Find us on Patreon here!

Buy your merch here!

Takeaway lessons

  1. ECPR candidacy may account for age, comorbidities, and code duration. Physiologic age is probably more important than chronological age. No-flow time without CPR should be very brief (witnessed is best), but low-flow time (with CPR) can actually be very long and still have good outcomes with ECPR. New systems should probably have stricter inclusion criteria, as numerous poor outcomes can endanger a fledgling program.
  2. The cause of arrest is usually not as important, partly because it’s often not known so early. ECPR can be a bridge to diagnosis and prognosis.
  3. One team should run the ACLS arrest while another handles the ECMO cannulation; it’s not possible to effectively do both. The cannulator should have their own ultrasound machine, and can function alone, although at least one skilled assistant is helpful. Mechanical CPR devices help by reducing energy in the room and reducing movement of the lower body; if not present, assign someone to manually stabilize the pelvis.
  4. Cannulation can be done by various services as long as they’re immediately available. Whoever it is should be comfortable using ultrasound. Cutdowns are probably not the preferred technique except in niche cases. A second service like CT surgery can arrive after a short delay to do the dilation and cannula placement if the in-department provider like EM or CCM can get initial access with smaller devices.
  5. Get ready by setting up equipment, position the ultrasound, and get sterile. As the patient arrives, have someone strip the clothes, expose the femoral region, and prep it, then get started with venous and arterial access.
  6. Vein vs artery cannot be distinguished without ultrasound, and can be difficult even with it. Don’t use anatomic location – use appearance. Arteries are thicker walled and small in cardiac arrest. TEE with a bicaval view to see your wire can be a huge help.
  7. The femoral artery should be accessed between the ligament and the bifurcation. Too high means RP bleeding risk; too low means potential for vessel damage. Similar for the venous access, although it’s more forgiving.
  8. Initially, place wires and then some kind of sheath, dilator, or line that will accept a larger, stiffer wire (Scott uses the Amplatz Superstiff). Going directly from needle to stiff wire is challenging and higher risk for vessel damage. This also means if you end up not proceeding to ECMO, you can just use the smaller sheaths for venous and arterial access.
  9. Even when a pulse returns, it’s often safer to proceed to ECMO in good candidates with a long arrest time. Supporting them through the next few days when they’re high risk of re-arrest, reperfusion injury, and other complications is likely to be safer than letting their heart do the work.
  10. Dilation for ECMO is similar to other dilation, just less forgiving. Follow the same consistent angle as the needlestick, constantly rack your wire, and consider dilating to a somewhat smaller cannula than in other VA ECMO situations, which is often tolerated post-arrest. Arterial cannulae of 17fr (women) to 19fr (men) or even smaller can achieve adequate flows, with venous cannulae of 19-23 Fr or even smaller.
  11. Goal: 5 minutes from first needlestick to active bypass.
  12. Ideally, one cannula per leg, but you can place both in the same side if needed. Certainly use the same side if using a cutdown.
  13. Venous cannula for the arrest patient should have the tip in the SVC (i.e. traversing the RA, not stopping before it). Use TEE to visualize this, or measure externally from groin to right nipple.
  14. Pumps can be pre-primed and sit waiting for 30-60 days in most cases; check manufacturer guidelines. Nurses can handle the pump with some extra training, at least for initial set-up, then transition care after 15 minutes or so to a perfusionist or ECMO-trained respiratory therapist.
  15. Pan-CT everyone. In fact, pan-CT all your cardiac arrests, as traumatic bleeding is common. Maybe do a coronary artery CT as well.
  16. Initial settings: 100% oxygen and titrate down quickly. Flow can be somewhat low compared to normal VA ECMO, allowing the native heart to keep some output and allowing smaller cannulas. Traditionally set sweep gas at roughly similar to bloodflow, but this tends to cause dramatic, rapid initial drops in PCO2, which may be harmful to a vulnerable brain; instead, start at a low sweep and gradually titrate it up.
  17. Do NOT prognosticate cardiac function early; recovery may happen late, and early withdrawal falsely affects your outcome figures from ECPR cases. The best numbers can only be achieved when the ECPR team continues to “own” the patient during their initial ICU course and doesn’t allow early withdrawal of ECMO.
  18. Neuroprognostication, conversely, tends to be easier; patients often stratify relatively early into clear good and bad outcomes. It should be established early on that families may want to pursue life support and that’s fine, but the team determines how long to continue ECMO, and it won’t be continued indefinitely.
  19. Economics: ECPR pump runs are short (<1 week usually), and reimbursement is all up front, so it actually pays well compared to many ECMO types, like long VV courses.
  20. The future: ideally, EMS would recognize good ECMO candidates and divert patients to ECPR centers. In rural areas, ED teams would be able to cannulate and start initially on ECMO, then transfer to larger referral centers.